A new high energy resolution modular neutron transmission detector was developed at the Gaerttner LINAC Laboratory located at Rensselaer Polytechnic Institute. This work is part of an effort to improve existing neutron induced cross section measurement capabilities at the Laboratory in and above the resolved resonance energy region from 1 keV to 600 keV. The overall design optimization process, module construction and qualification of the detector are presented. High resolution time-of-flight neutron transmission measurements on isotopically enriched metallic samples of four stable molybdenum isotopes, 95Mo, 96Mo, 98Mo and 100Mo were obtained to perform high resolution cross section measurements at the LINAC’s 100-meter flight path with the new detector utilizing a neutron burst width of 6-15 nsec.

II. HIGH RESOLUTION MODULAR DETECTOR DESIGN

The new modular neutron transmission detector system employs four identical cube-shaped modules each with a 6Li-glass scintillator, two out-of-beam photomultiplier tubes and a low-mass light-tight aluminum casing with inner reflective surfaces. The modular design allows operational reliability, relatively easy maintainability and lower overall life-cycle cost than a single all-in-one detector system. It also provides functional versatility. For example, placement of each detector at specific angles around a sample can provide a neutron scattering detector.

![Detailed Computer-Aided Design (CAD) model of the modular detector system.](image-url)
6Li-glass has been widely used for neutron detection since its development in the late 1950’s because of its high neutron detection efficiency, high light transmission at emission wavelengths, homogeneity, fast luminescence decay times, and large areas that can be fabricated [2,3]. For this detector, 0.5” thick 6Li-glass was chosen. The light production in the glass is based on the exothermic 6Li (n, α) reaction with a positive Q-value of 4.76 MeV [3] and a 1/ν cross section with a thermal value of 940 ± 4 barns [4]. This makes it suitable for neutron detection from the thermal region all the way through the keV region where a maxima in the cross section occurs near the 244 keV 6Li resonance. There is also an increase in efficiency in this faster region due to neutron multiple scattering in the glass. MCNP5 [5] was used to calculate detector efficiency to estimate the resolution effects of fluctuations in the flight path length of neutrons due to multiple scattering. Light collection optimization experiments were conducted to compare the performance of an unpolished square of 6Li-glass (unpolished on the front and back) to a fully polished glass. The latter configuration provided a slight improvement to the pulse height resolution and was subsequently used in each detector module. The housing of each module was made from various thicknesses and alloys of aluminum. The front and back sides that are directly exposed to the neutron beam during measurements were made of 0.005” thick aluminum foil. The inner sides were made of 1/16” thick bendable aluminum sheet (alloy 1100). The outer casing was made of 0.5” thick aluminum (alloy 6061). To optimize light collection in each detector module, experiments were conducted to compare the pulse height resolution enhancement of different specular (mirror-like) and diffuse (rough surface) light reflectors. The 3M Vikuiti™ Specular Reflector (ESR), a thin non-metallic optical enhancement film [6], provided the best light collection (better energy resolution and highest gain). The ESR film was used to coat the inner aluminum faces of each detector module. The other reflectors tested included TiO$_2$, Teflon, white paint and shiny/dull/crumpled aluminum.

III. DETECTOR ELECTRONICS

Fast electronics were employed to take full advantage of the short neutron burst width provided by the LINAC (6-15 ns) and the fast 6Li-glass scintillator response time. For light collection two 5” diameter out-of-beam PHOTONIS XP4512/B [7] photomultiplier tubes (PMTs) were used in each detector module. Out-of-beam tubes were used in order to eliminate direct neutron backscatter into the scintillator glass. Backscatter from the PMT borosilicate glass face (comprised of mostly SiO$_2$) can lead to an overall degradation in the detector energy resolution [8]. As illustrated in Figure 2, the two PMT signals are summed and subsequently fed into an ORTEC 579 Fast-Filter Amplifier that boosts the signal-to-noise ratio. This amplifier performed better than several iterations of custom electronics tested. The amplified signal is then fed to an ORTEC 935 Constant Fraction Discriminator (CFD) that eliminates the majority of the high and low-level noise or gamma-ray background signals and provides constant fraction timing on the fast input signals. It gates the system based on pulse amplitude while maintaining adequate time resolution. After being fed into the CFD, the signals from all four modules are then summed in an ORTEC CO4020 logic unit. The summed output of all four modules is converted to an optical signal for transport to a data acquisition computer using a LuxLink DX7201 Fiber Optic TTL Transmission System. The data acquisition computer houses a FAST ComTec P7889 Time-of-Flight Multiscaler Board with 100 picosecond time resolution [9]. Coincidence testing of two detector modules demonstrated excellent system time resolution of ~5 ns.

IV. DETECTOR COUNT RATE

Initial tests showed that the new high resolution transmission detector at a 100-meter flight path suffered from a low count rate in the 1-100 keV energy region and saw a large increase in the several hundred keV region. This is both due to the fast nature of neutron evaporation energy spectrum originating from the Pacman [10] photoneutron target, target moderation, loss of neutrons due to the large beam divergence at such a long flight path and finally the intrinsic neutron detection efficiency of 6Li-glass. A higher count rate was needed to be

![Fig. 2. Schematic of the high resolution detector system electronics.](image)
achieved in order to obtain adequate counting statistics for high accuracy cross section measurements in the lower keV region where the newer important (resolvable) resonance structure is found. To achieve this, small pieces of ⁶Li-glass were purchased and glued to the sides of the original square piece, effectively doubling the detection area and improving the count rate by a factor of approximately two. Concurrent measurements with another ⁶Li-glass scintillation detector positioned at a separate 31-meter flight path were also performed to provide additional data in the 1-5 keV region where a higher neutron flux and better signal-to-background ratio is needed.

V. TRANSMISSION MEASUREMENTS

Transmission is one of the simpler cross section measurements both from an experimental standpoint and data reduction standpoint. The measurement is performed by placing a material in a collimated neutron beam and measuring the number of neutrons passing through the material with a neutron detector (and measuring the open beam count rate with no material in the beam) [11].

\[T_i = \frac{C_{i}^{\text{Sample}} - K_{i}^{\text{Sample}} B_i - B_{i}^{\text{Sample}}}{C_{i}^{\text{Open}} - K_{i}^{\text{Open}} B_i - B_{i}^{\text{Open}}} \]

\[B_i = \text{nominal time-dependent background count rate} \]

\[B_{i}^{\text{Sample/Open}} = \text{steady-state background counting rates for the sample and open measurements} \]

\[K_{\text{Sample/Open}} = \text{normalization factors for the sample and open measurements} \]

A relationship between transmission and total cross section is given:

\[T = \exp[-N \cdot \sigma_t(E) \cdot x] \]

\[T = \text{probability of a neutron of energy } E \text{ to pass through the sample without interaction.} \]

\[x = \text{thickness of sample} \]

\[N = \text{number density of sample} \]

\[\sigma_t = \text{total microscopic neutron cross section} \]

VI. BACKGROUND DETERMINATION

A large time-dependent γ-ray background component was observed in the isotopic Mo measurements over the keV energy region. MCNP5 simulations determined that the γ-ray background component was mainly a result of neutron capture in the hydrogen of the target water moderator. A simple method was developed to accurately determine the sample/open background. Two thicknesses of polyethylene were used to extrapolate the gamma-background to zero-thickness polyethylene. Black notch filters were used to determine the neutron background.

VII. RESULTS

Preliminary transmission data from several measurements were compared with existing experimental and evaluated data of ⁹⁵Mo. SAMMY [12] was used to generate Doppler and resolution broadened transmission of the evaluated data. It can be observed in Figure 4 that the new data is in good agreement with the latest evaluation of ENDF/B-VII.0. It can also be observed in Figure 5 that there are many new resonances in the unresolved region above 2 keV where ENDF/B-VII.0 represents the total cross section as a smooth unresolved average cross section. The characterization of these new resonances up to 50 keV will most likely have the largest contribution to cross section libraries.
VIII. CONCLUSIONS

A new high resolution time-of-flight neutron transmission detector was developed. Preliminary transmission measurements were performed at the 100-meter flight path. An open-beam and sample-in background determination method was developed to correct for both neutron and gamma-ray background. The experimental neutron energy resolution function needs to be calculated using MCNP and verified through an experimental benchmark. Further measurements of isotopic Mo samples need to be performed in order to obtain adequate counting statistics to obtain high accuracy cross section data.

The final data will be fit to extract resonance parameters (energy, incident neutron angular momentum, total width, neutron width, and radiative width) using SAMMY in order to extend the resolved resonance region in Mo isotopes.

ACKNOWLEDGEMENTS

The authors would like to thank the technical staff at the RPI LINAC (Peter Brand, Matt Gray, Martin Strock and Azzedine Kerdoun) for their efforts in operating and maintaining the LINAC and help in setting up experiments.

REFERENCES

6. 3M Optical Systems, Vikuiti™ Enhanced Specular Reflector Data Sheet.
12. N. LARSON, Introduction to the theory and Analysis of Resolved (and Unresolved) Neutron Resonances via SAMMY, ORNL, 2000